
www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

1

Plugged or Unplugged Teaching: A Case Study of
Students’ Preferences for the Teaching Programming

Ali Kürşat Erümit1

Güven Şahin2

1Trabzon University
2Recep Tayyip Erdoğan University

DOI: 10.21585/ijcses.v4i1.82

Abstract

This study is an investigation of the effects of plugged and unplugged activities in a programming course using
the Programming in Seven Steps (PSS) model on pupils' satisfaction and activity type preferences. A case study
method was used in the classroom was the case. Data included students' diary, their responses on semi-structured
interview forms, and semi-structured interviews with a selected sub-set of students. The collected data were
analyzed by content analysis technique. It has been found that there are different factors that positively affect
student satisfaction for "Conditional Structures", "Variables" and "Loops" courses that are processed according to
YAP model. In addition, students' preferences and reasons for activity type differ. Study results show that training
students with their preferred activity types increases their satisfaction and enable them to overcome associated
difficulties more easily. It is concluded that because the PSS model is effective with students with different learning
environment preferences, it can be used as a model to increase learner satisfaction with programming instruction.

Keywords: teaching programming, PSS model, plugged activities, unplugged activities, student satisfaction

1. Introduction
With the rapid advance of the developments in the field of science and technology since the industrial revolution
up to the present, the skills individuals need to have in the 21st century have evolved. Wagner (2008) lists such
skills as critical thinking and problem solving, quick wit and adaptation, entrepreneurship and taking initiative,
and inter-system and interpersonal cooperation as well as leadership, effective oral and written communication,
curiosity and imagination, and ability to access and analyze information.

Studies on acquisition of these 21st century skills reveal that teaching programming significantly improves
students’ logical thinking (Shih, 2014), problem solving (Brown et al., 2013; Lai and Lai, 2012; Kalelioğlu and
Gülbahar, 2014), computational thinking (Sáez-López et al., 2016), reflective thinking (Fesakis and Serafeim, 2009;
Kobsiripat, 2015), metacognition (Fessakis, Gouli, and Mavrodi, 2013; Kafai and Burke, 2014), and collaborative
work (Denner, Werner, and Ortiz, 2012). In addition to these skills, learning programming has been found to have
a positive effect on students’ academic achievement in a variety of subjects (computers, mathematics, science,
language arts, and arts education) (Calder, 2010; Sáez-López et al., 2016).

The literature shows that teaching programming holds an important potential for helping students gain 21st century
skills. Through programming teaching in the literature; students' logical thinking (Lai & Lai, 2012; Shih, 2014),
problem solving (Brown et al., 2013; Lai & Lai, 2012), computational thinking (Sáez-López et al., 2016), higher
level thinking There has been positive progress in skills (Kafai & Burke, 2014) and critical thinking (Erümit et al.,

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 2

2019). Besides developing students’ cognitive skills, however, programming requires other higher level skills for
the learning process itself (Law, Lee and Yu, 2010), which makes learning programming is quite challenging
(Helminen and Malmi, 2010), and students have an overall lower level of achievement in this subject (Robins,
Rountree, and Rountree, 2003). In order to increase the success of teaching programming and to facilitate students’
understanding, it is necessary to first teach the logic of algorithms to students (Ala-Mutka, 2004). For this purpose,
interesting and entertaining visual programming tools have been developed in order to facilitate learning for
beginners in programming education (Schwartz, Stagner, and Morrison, 2006).

Teaching programming entails challenges in selecting suitable activities for a group of learners (Çatlak, Tekdal,
and Baz, 2015), helping students understand and apply algorithms (Futschek and Moschitz, 2010), and helping
them use programming languages in writing codes (Arabacıoğlu, Bülbül, and Filiz, 2007). The syntax of text-
based programming is considered as one of the most challenging issues for students (Mannila, Peltomaki, and
Salakoski, 2006; Özmen and Altun, 2014), while the code blocks presented in visual programming are easier for
beginning level programmers to understand and apply (Wilson and Moffat, 2010). Calder (2010) argues that
working with the block-based visual tools of programming software increases students’ satisfaction and motivation
to persist. In many studies, it was noted that the use of visual programming accelerates comprehension of the
process (Naharro-Berrocal, Pareja-Flores, Urquiza-Fuentes, and Velazquez-Iturbide, 2002). For beginning learners,
therefore, elementary level software programs such as Scratch (Malan and Leitner, 2007; Wu, Chang and He,
2010), Kodu (Stolee and Fristoe, 2011), StarLogo (Klopfer and Yoon, 2005), and Alice (Kelleher, Pausch, and
Kiesler, 2007) are recommended as they allow students to perform coding by placing code blocks in order through
drag and drop functions. In this way, the frequently faced problem of syntactic errors in text-based programming
can be largely overcome.

In addition, attitudes toward programming (Gomes and Mendes, 2007; Hawi, 2010) and self-efficacy beliefs
(Aşkar and Davenport, 2009) are some of the affective issues encountered in the teaching programming. These
challenges often arise during the teaching of basic programming concepts such as the structure of a programming
language (Lahtinen, Ala-Mutka, and Järvinen, 2005), loops (Ginat, 2004), and algorithm structures (Seppälä,
Malmi, and Korhonen, 2006).

Another major challenge encountered in teaching programming relates to overall pedagogical approaches (Coull
and Duncan, 2011; Lahtinen, Mutka, and Jarvinen, 2005), such as the following as found in the literature: Problem
solving (Asad, Tibi, and Raiyn, 2016; Grover, Pea, and Cooper, 2016; Qian and Lehman, 2016), abstraction
(Futschek and Moschitz, 2010), peer instruction (Denner, Werner, and Ortiz, 2012), collaborative learning (Denner,
Werner, and Ortiz, 2012; Denner et al., 2014), writing algorithms (Futschek, 2006; Futschek and Moschitz, 2010;
Milková and Hůlková, 2013), and drama or role plays (Karaosmanoğlu and Adıgüzel, 2017; Sarıoğlu and Kartal,
2017; Weigend, 2014).

In the implementation of these approaches, both plugged and unplugged activities (activities with and without use
of computers) may be used. For example, Sáez-López, Román-González and Vázquez-Cano (2016) carried out a
study with 107 middle schoolers using Scratch and computerized activities. Their purpose was to explore the
differences, if any, their approach made in the students’ attitudes and competencies. They found that the students
made progress in satisfaction, attachment, computational thinking, and calculating skills. Taylor, Harlow and
Forret (2010) implemented plugged activities with 9- and 10-year-old students using Scratch and found out that
the learners were interested in Scratch as a programming tool. In addition, they pointed out that the tool provides
an environment in which students employ problem solving processes such as idea generation, target setting and
testing. Similar studies using visual programming tools like Scratch have shown that such tools improved students’
satisfaction, interest, and enjoyment in learning (Kalelioğlu and Gülbahar, 2014; Kelleher et al., 2007; Malan and
Leitner, 2007; Pinto and Escudeiro, 2014; Wu et al., 2010).

Especially at an early age, there are difficulties in learning abstract programming topics. As a solution, unplugged
activities can be used to teach programming. Because unplugged activities contain the lowest level of technical
information, they involve fewer cognitive challenges than other programming tasks and are commonly used in
basic computer instruction as a starting point before student progress to plugged activities (Kotsopoulos et al.,
2017). Starting teaching programming according to the activity type preferences (plugged/unplugged) of the
students or planning the activities to include both types of activities can facilitate the teaching programming for
younger students and affect their perceptions and attitudes towards programming positively (Şahin, 2018). For
example, Futschek and Moschitz (2011) introduced unplugged activities prior to plugged activities to students at
the basic level of programming. They found out that this sequence of teaching increased students' satisfaction with
plugged activities, and even those who previously had not been interested in programming ended up being

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 3

enthusiastic. Giannakos et al. (2013) also found that using both plugged and unplugged activities increased
students' interest in and satisfaction with both programming and computer sciences as a subject. They also found
that female students became more interested in computer sciences than their male peers. Hermans and Aivaloglou
(2017) investigated which method, plugged or unplugged, is more effective as a starting activity in programming
in order to facilitate learning the concepts of programming, support learners’ self-efficacy in programming tasks,
and motivate them to do research. As a result, the group starting with unplugged activities recorded higher self-
efficacy. Also, those students used a larger range of Scratch blocks.

Pedagogical approaches and types of activities (plugged and unplugged) mentioned in the literature, however, tend
to be applied independently in programming instruction. Moreover, there exists no specific model for these
coordinating these pedagogical approaches in class and laboratory settings with the age of the target group, for
making them workable steps, and thus for systematizing programming instruction. Targeting these problems,
Erümit et al. (2019) devised a teaching model entitled Programming in Seven Steps (PSS) for teaching
programming so as to improve students’ algorithmic thinking and problem-solving skills independent of any
specific programming environment.

The seven steps of the model include plugged and unplugged activities as shown in Figure 1:

Figure 1. Steps of the PSS Model

The first four steps, “Understand the Problem,” “Devise a Plan,” “Compare the Strategies,” and “Devise an
Algorithm,” use unplugged activities. The last three steps, “Code the Algorithm,” “Identify and Correct an Error
in a Different Code,” and “Prepare and Code New Algorithms,” involve plugged activities. These steps are
further elaborated below.

The first step - understand the problem involves identifying what relevant information is given in the problem,
what further information is needed, and what given information is irrelevant, more or less simultaneously. The
next step, devise a plan, requires developing strategies appropriate to seeking the solution of the problem and
deciding how to implement them. In the step comparing the strategies, the results of implementing different
strategies are evaluated and compared to determine through negotiation the best path to the solution. In the
following step, devise an algorithm, the most effective algorithm emerging from the previous step is determined,
and in the following step, the generated algorithm is coded. Identify and correct an error is a debugging process
independent of the other steps to detect errors in the coding of a program. Finally, prepare and code new algorithms,
involves revising the algorithm and/or generating new algorithms suitable for the given problem and coding them.

The purpose of the current study was to discover students’ preferences for plugged and unplugged activities along
with their justifications and also their satisfaction with the activities performed in the programming lessons taught
with the PSS model. For this purpose, answer was sought for the following questions:

1) What is the effect of applying the PSS model in programming lessons l on students’ satisfaction with the
instruction provided?

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 4

2) What type(s) of activities do students prefer in programming lessons employing the PSS model and what
are the reasons for their preferences?

2. Method
2.1. Research Model
Case study was the qualitative research method used in this study. Qualitative research is a research model which
uses non-metric data collection methods such as observations, interviews, and document analysis, and follows
procedures for eliciting perceptions and depicting events in a realistic and holistic way in their natural setting
(Yıldırım and Şimşek, 2005). It also provides flexibility to the researcher during the design and execution of the
research (Silverman, 2013). Among many qualitative research designs, McMillan (2000) describes case study as
a method for in-depth exploration of one or more events, settings, programs, social groups, or other interconnected
systems. It is a research pattern in which an entity is defined and customized with reference to time and space
(Büyüköztürk, Çakmak, Akgün, Karadeniz, and Demirel, 2016). To allow in-depth investigation of different
aspects of a particular case, a variety of data sources and collection techniques are used (Cohen, Manion, and
Morrison, 2005).

In this research, case study was chosen to achieve the following:

• in-depth content analysis of the data collected from the students related to activities offered by the PSS
model,

• better understanding feelings, thoughts and emotions through qualitative methods,
• evaluating the findings in a descriptive way.

2.2. Participants
Participants were 38 sixth grade students (20 girls and 18 boys) attending a public school, when the lesson plans
were used in classes. Students were coded from K1 to K38. Students study in a classroom with average
achievement in a school with a medium ranking among schools with computer lab. They had not previously used
Scratch or received any programming training. The research-related activities were carried out by the teacher in
charge of Information Technologies and Software (ITS) course, who had 15 years of professional experience and
5 years of experience in teaching Scratch programming. The researcher personally collected data while visiting
the school throughout the implementation stage.

2.3. Data Collection Tools
Data included students’ journals (Appendix B), periodic semi-structured interviews responses with a sub-set of
students, and their responses to a semi-structured interview form (Appendix A), developed by the researcher to
explore students’ perceptions and evaluation of the process. While preparing the data collection tools, the
researcher consulted with six field specialists (two lecturers in Computer Education and Instructional Technologies,
two PhD candidates, and two master’s students). Thus, the scope validity of the data collection tools was ensured.
Data collection tools were applied to 10 different students (5 females, 5 males) in the sixth grade before the actual
application and their opinions were obtained and the necessary arrangements were made, and their opinions were
obtained again. In this way, the validity of meaning is also provided.

2.4. Data Collection and Analysis
All students wrote journal entries every week at the end of each week (nine times in total, see Appendix B). Also,
the researcher and the teacher jointly conducted five semi-structured interviews with nine students (each student
individually) at the juncture between one topic and the next. Interviewees were selected to represent a balance of
mathematics and ITS proficiency levels (three low, three medium, three high) and genders (five females and four
males). Interviews were audio-recorded, and all students’ data were transferred to the computer for content analysis.
Participants’ informed consent was obtained prior to the interviews, and they participated on an absolutely
voluntary basis. All participants' information was kept confidential.

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 5

2.5. Validity and Reliability of Study
The qualitative data were analyzed using content analysis methods, which included combining, reducing and
interpreting what the participants said and what the researcher witnessed and read (Merriam and Tisdell, 2015).
Audio-recordings of the student interviews were recorded, digitalized, and analyzed which included editing,
coding by themes, and supporting the themes with citations and excerpts (Creswell, 2013). In addition, during the
interviews the researcher kept detailed notes, paying due diligence to capturing all information. All data were
securely saved in case of need to verify the results. Three researchers specializing in the field of Computer
Education and Instructional Technologies first analyzed the data independently and then aligned their results.
Initially the researchers’ analyses were 88% congruent, following which they convened and reached full consensus
on the study themes and related areas. The data were confirmed by member-checks by participants when deemed
necessary. The researchers played an active role in reporting as well as in analyzing data.

2.6. Implementation Approvals
Because the research involved human subjects and their data, an approval certificate was obtained from the Ethics
Committee for Social and Human Sciences of University, documenting conformity with ethical principles of
purpose, justification, method and data collection instruments and procedures. The document was then submitted
to the Ministry of National Education (MoNE), which granted approval for research in schools. After both
approvals were obtained, an information form about the study and consent form were sent to parents of the
participant students. The study was conducted with students only after receiving their parents' consent.

2.7. The Implementation
The research was carried out for 9 weeks (80 minutes each) with 38 students studying in the 6th grade. Each of
the students in the class had his/her own computer, which was controlled from a central computer. In the first week,
a researcher informed the students about the implementation process and its importance. Within the scope of the
seven-step lesson plans, the first four steps were carried out without computers, while the other three steps were
plugged. The weekly implementation process is shown in Figure 2.

7 steps of PSS model may not be applied in the same week. This is related to the duration of the lesson. The
important thing is to use 7 steps to teach the same subject. In the same week, 7 steps of PSS may not catch up since
the lesson time is limited. However, since each step constitutes a meaningful piece, it is not a problem that 7 steps
are independent.

As shown in Figure 2, the first week covered Problem-Solving Concepts and Approaches. In the first lesson, the
activity, “Helping the Shepherd” (Appendix C) was carried out with an activity sheet providing the scenario of the
problem, a story visual, and a space in which to write the solution algorithm using pseudo-code. In the following
lesson, the activity “I am finding the cities” (Appendix D) also included an activity sheet for students to analyze
and solve a problem. Again, they used the blank area to provide the solution algorithm created through pseudo-
code.

During the two classes of week two, the topic “Let’s Recognize Scratch” was addressed. In the first lesson, the
students studied sample projects on the Scratch web platform, guided by the course teacher to make sure they paid
attention to the salient features of the projects. In order to ensure that the students pay attention to the
characteristics of the projects they are studying, instructions were given by the course teacher (Appendix E). The
next lesson was allocated for students to freely perform activities inspired from the projects examined. In the
following week, the previous week’s topic was continued. In the first lesson, the students watched Scratch training
videos via the Education Informatics Network (EBA, http://www.eba.gov.tr/). In the next class by students
completed some easy exercises.

http://www.eba.gov.tr/

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 6

Figure 2. The Implementation Processes

In week four the “Conditionals” were taught, again in two lessons beginning with the activity, “Ali and Ayşe are
going on holiday,” (Appendix F) in which the first four steps of the PSS model were applied. For “Understand the
problem”, the students answered questions about the problem situation using the Problem Acknowledgement Table
(PAT) form (Appendix G). For “Devise a Plan”, they used the Strategy Devise Form (SDF) (Appendix H) to decide
on the most appropriate strategy and solved the problem.

For the following step, “Compare the Strategies,” the teacher worked with the students to identify the most
appropriate strategy from those generated in the previous step. As the next step, the students wrote the algorithm
for their own plan using pseudo-code. Later, some students voluntarily dramatized their algorithm using materials
provided by the teacher (Picture 1).

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 7

Picture 1. In Class Application

The next lesson began with a Scratch computer application, “Questions and Answers,” followed by “Maze Map”
as the fifth and last step of the model in this phase.

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 8

Picture 2. “Maze Map” Scratch Activity

In the fifth week, the topic from the previous week was continued. In lesson one, the teacher presented a Scratch
application with an incorrect code structure which the students studied to detect and correct the errors.

Incorrect Correct

Figure 3. Incorrect and Correct Code

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 9

During the next class, the students and the teacher finished the activity by modifying the faulty code structure
together. After that, the teacher sent the students an assignment via the EBA system, which corresponds to steps 6
and 7 of the PSS Model.

In the sixth week, the topic of Variables was discussed. The first hour was used for an activity titled “Ali needs
fruit,” in which students completed the first four steps of the model. The next lesson followed for the
implementation of Step 5 of the PSS Model in the context of “Fruit Basket” as a Scratch application. The seventh
week was a continuation of the previous week. The procedure was put into practice as described under
“Conditionals” in the second week

During week eight, “Loops” was discussed. The first lesson, which featured the activity “Ali playing a game,” was
completed after the first four steps of the PSS model as described in the fourth week had been implemented. The
following class started with the Scratch computer application “My fuel amount,” followed by “Auto racing,”
finalizing stage 5 of the PSS model. In the ninth week of the implementation, the issue of “Loops” continued. The
application in the ninth week was carried out in the same way as the application in the fifth week, and the whole
application process was completed.

To recapitulate the scope of the PSS model, as part of the first step, understand the problem, the students answered
the questions formed in accordance with the activity in the lesson plan. In this step, the students were asked to
distinguish the necessary and unnecessary information in the problem presentation. During the second step, devise
a plan, the students sought the best among multiple paths to reach a solution to a problem. In step three, comparing
the strategies, the teacher constructed the optimum result by examining all the students’ proposed solutions
together. Step four, code the algorithm, was completed in two parts. First, the students represented their solutions
as algorithms written in pseudo-code. Later, volunteers acted out their algorithms in dramatic performances for the
class. All of these four steps could fit into one class hour. During the next step, code the algorithm, the students
undertook the task of transferring the previous activity onto Scratch. This step took about two hours.

In step six, identify and correct an error in a different code, the students were given Scratch applications with
missing or incorrect code structures independent from the activity in the lesson plan and required to identify and
eliminate the errors. After they completed the task individually, the teacher collaborated with the students to
complete it on the smart board. This stage took one lesson period.

At the final stage, prepare and code new algorithms, the teacher mailed assignments to the students via EBA with
specified criteria. In this assignment, the students were asked to first write the algorithm that met the criteria given
and then to encode the algorithm in the programming environment. An overview and use of lesson plans are given
in Table 1.

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 1

Table 1. Summary Table for Lesson Plans

Topic Attainment Activity PSS Step Type Individual
or Group

Duratio
n Week

Problem Solving
Concepts and
Approaches

• Analyzes a problem.
• Describes the importance of generating authentic solutions for

problems.
• Devises an algorithm for solving the problem.
• Discusses the problem-solving process and basic concepts.

Helping the
Shepherd - Unplugged Individual

or Group 40 mins

1
Weaver Birds - Unplugged Individual

or Group 40 mins

Let's Recognize
the
Programming
Environment

• Adds characters to the screen.
• Changes the screen background.
• Gives movement to the characters.
• Gives movement by changing character costume.
• Recognizes the interface and features of the block-based

programming tool.
• Describes the function of a program in the block-based

programming tool.

Leisure Time - Plugged Individual 160
mins 2-3

Conditionals

• Analyzes a problem.
• Describes the importance of generating authentic solutions for

problems.
• Discusses the problem-solving process and basic concepts.
• Devises an algorithm for solving the problem.
• Analyzes different algorithms and chooses the fastest and most

accurate solution.
• Generalizes the solution to similar problems.
• Tests the solution of an algorithm.
• Improves and edits a program in the block-based programming tool

against given criteria.
• Creates programs which include the linear logic structure.
• Creates programs which include the condition structure.
• Creates programs which include multiple condition structures.
• Corrects a program in the block-based programming tool.
• Tests and corrects programs involving the linear logic structure.
• Tests and corrects programs involving the condition structure.
• Tests and corrects programs involving the multiple condition

structure.

“Ali and Ayşe
are going on

holiday”
1-4 Unplugged Individual

or Group 35 mins

4-5

“Colourful
Steps” 4 Unplugged Group 10 mins

“Questions and
Answers”

5 Plugged Individual 95 mins
“Maze map

game”

“Reading and
editing codes” 6 Plugged Individual 20 mins

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 2

• Divides a problem into sub-problems.

Variables

• Analyzes a problem.
• Describes the importance of generating authentic solutions for

problems.
• Discusses the problem-solving process and basic concepts.
• Devises an algorithm for solving the problem.
• Analyzes different algorithms and chooses the fastest and most

accurate solution.
• Generalizes the solution to similar problems.
• Classifies data by type.
• Tests the solution of an algorithm.
• Uses the constants and variables to solve the given problem.
• Creates programs which include the linear logic structure.
• Improves and edits a program in the block-based programming tool

against given criteria.
• Corrects a program in the block-based programming tool.
• Tests and corrects programs involving the linear logic structure.
• Divides a problem into sub-problems.

“Buying fruit
at

greengrocer’s”
1-4 Unplugged Individual

or Group 30 mins

6-7

“I choose
fruit” 4 Unplugged Group 10 mins

“My fruit
basket” 5 Plugged Individual 95 mins

“Reading and
editing codes” 6 Plugged Individual 20 mins

Loops

• Analyzes a problem.
• Describes the importance of generating authentic solutions for

problems.
• Discusses the problem-solving process and basic concepts.
• Devises an algorithm for solving the problem.
• Analyzes different algorithms and chooses the fastest and most

accurate solution.
• Generalizes the solution to similar problems.
• Tests the solution of an algorithm.
• Improves and edits a program in the block-based programming tool

against given criteria.
• Creates programs which include the linear logic structure.
• Creates programs which include the loop structure.
• Chooses the most appropriate condition structures to implement an

algorithm.
• Generates solutions for complex problems by using different

programming structures.
• Tests and corrects programs involving the loop structure.

“Ali playing a
game” 1-4 Unplugged Individual

or Group 30 mins

8-9

“Auto racing”

in-class
animation

4 Unplugged Group 10 mins

“My fuel
amount”

5 Plugged Individual 95 mins
“Auto racing”

Application

“Reading and
editing codes”

Application
6 Plugged Individual 20 mins

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 3

• Determines the relation between mathematics and computer
sciences.

• Devises an authentic project which involves all programming
structures.

• Divides a problem into sub-problems.

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 1

All of the activities listed in Table 1 were developed in accordance with the PSS model. Şahin’s (2018) thesis
provided a reference for developing the lesson plans and activities used in the implementation stage and for testing
the suitability of the activities for the students’ cognitive levels, determining lesson durations, and coping with
overcrowded classrooms. Also, the lesson plans were prepared in accordance with the Directive of the Ministry of
National Education on Planned Implementation of Education and Instruction Activities (2003).

3. Results
3.1. Effects of programming lessons taught with the PSS model on students' satisfaction
To answer the first research question (What is the effect of applying the PSS model in programming lessons on
students’ satisfaction with the instruction provided), the researchers analyzed the data collected through students’
semi-structured interviews and journals using content analysis, including such topics as “Conditionals,”
“Variables,” and “Loops”. Table 2 presents students’ reflections on the teaching of “Conditionals”.

Table 2. Students’ Reflections on Learning about Conditionals through PSS

Students’ Reflections on Learning about Conditionals
through PSS

f (n=29)

Lesson was fun. 19

I’d like lessons in this way. 5

I find the lesson effective or efficient. I could understand the topic
very well.

16

I find the teaching of the lesson a bit boring. 2

These highly positive responses are supported by the following excerpts:

Plugged and Unplugged Activities

“I thought it was going to be boring while I was starting. But when I started the class,
I started to have fun slowly. I think it was a really fun lesson I enjoyed all the activities;
I hope we will go on like this.” (K8)

“I think the teaching of the lesson was very nice. Thanks to the activities given to us,
the topic was understood very well, and the process was fun.” (K11)

“I enjoyed it a lot and had fun. I think it is more efficient for us to be taught in this
way. I want it to continue like this.” (K18)

Plugged Activities

“The plugged activity was far more fun.” (K10)

“It gets more fun on the computer.” (K4)

Unplugged Activities

“I had difficulty understanding the problem in the activity Ali and Ayşe. I think it was
difficult, so I was bored.”(K15)

“I could understand better the problem and the solution in this way. I realized that I
can understand problems more effectively by playing activities and games.” (K6)

“It helped me better understand the parts I didn't understand. It was a fun activity.”

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 2

(K20)

“I could better understand the activity by seeing, and I believe it will stay longer in
my mind in terms of time.” (K29)

“I think we have visualized the problems thanks to that activity. It also made the lesson
more fun.” (K31)

As can be understood from Table 2 and the excerpts above, the students particularly enjoyed learning through the
PSS model in connection with “Conditionals.” Although some students found some of the relevant activities
difficult, they did not make negative comments about the overall instructional process. Only two students said that
they were bored by the lesson because they found the problem in unplugged activities difficult to understand. Table
3 presents students’ views regarding the teaching of the topic “Variables”.

Table 3. Students’ Reflections on Learning of Variables through PSS

Students’ Reflections on Learning of Variables through PSS f (n=30)

Lesson was fun. 15

I liked that the lesson was taught in this way. 17

I learnt to devise a strategy. 3

It was a bit boring. 4

Table 3 demonstrates that students’ perceptions of the lesson on variables were highly positive, as exemplified in
the following excerpts:

Plugged and Unplugged Activities

“The animation was also nice. It was also easy to transfer this to the Scratch
environment.” (K31)

Plugged Activities

“They were very nice and logical activities. I enjoy such activities.” (K7)

“It was enjoyable and instructive. Maybe it could have been a little harder. Other than
that, I liked the faulty code activity the most.” (K12)

Unplugged Activities

“I had fun doing it, the activity was nice and instructive, but it was too easy.” (K8)

“I couldn’t find any negative sides. As for positive, I learned strategy.” (K19)

“I had a lot of fun; I learned variables better and clearly.” (K5)

“It was nice. The activity was very easy for me, so I was a little bored.” (K3)

“I had so much fun. It was a lot of fun to act the fruits and Ali. My thinking ability has
improved.” (K7)

“That was so fun. This game helped me understand variables.” (K12)

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 3

As indicated in Table 3 and the excerpts, , “Variables” was enjoyed the most as a result of teaching with the PSS
model. However, four students stated that they were bored because they found the problem too easy.

Students’ reflections on the topic “Loops” are given in Table 4.

Table 4. Students’ Reflections on Learning Loops through PSS

Students’ Reflections on Learning Loops through PSS f (n=24) %

Lesson was fun. 11 45.83%

I liked that the lesson was taught in this way. 13 54.16%

I could better understand the topic. 2 8.33%

It improved my skills of understanding the problem, devising a
strategy.

2 8.33%

Table 4 shows that the students reported substantially positive views regarding the use of the PSS for learning
loops. Some of the students’ reflections on the process are excerpted below:

Plugged Activities

“I had more fun on the computer.” (K23)

“Overall, it was nice. I liked the coding part on Scratch the most. The negative side
was that there were no different ideas. Other than that, it was nice.” (K8)

“It has no negative side. Its positive sides are about our editing the incorrect codes in
the activity. In this way, I could understand much better what each operation is for.”
(K13)

Unplugged Activities

“I found it good. It didn’t have a negative side. As for the positive side, it helped me
devise a strategy and understand better.” (K4)

“I like it. The positive sides have improved my ability to understand the problem, and
the step of creating the algorithm reminded me of the algorithms we have recently
created. I don't think there's a negative side.” (K6)

“The positive sides are about improving our strategy strength. They have no negative
sides.” (K18)

“I found it fun and it made me understand the topic better.” (K12)

As reported in Table 4 and the excerpts, the participants found learning “Loops” using the PSS model to be a
pleasant and entertaining experience. Notably, no students reported negative opinions about the course of the
lesson.

3.2. Students’ activity type preferences in programming lessons taught with the PSS model along with their
justifications
Students’ responses to “What types of activities do you prefer, plugged only, unplugged only, or both?” are
summarized across three topics in Table 5:

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 4

Table 5. Students’ Preferences for Activity Type

Topic Activity Type n f %

Conditionals

Plugged

30

5 16.66

Unplugged 5 16.66

Both 20 66.66

Variables

Plugged

29

7 24.13

Unplugged 2 6.89

Both 20 68.96

Loops

Plugged

24

6 25

Unplugged 4 16.66

Both 14 58.33

Table 5 shows that although both types of activities were predominantly preferred, some students opted for only
plugged or unplugged activities.

In order to find out the reasons for their preferences, the students were asked “Why would you prefer a particular
type of activity (plugged, unplugged, both) for teaching of the lessons?” Table 6 summarizes the students’ reasons
for their preferences along with supporting excerpts from their answers.

Table 6. Students’ Reasons for Activity Preferences

Type of
Activity

Reason for Preference Student’s Comments

Unplugged
Activities

(A)

• It presents a problem status
with more than one path of
solution.

• The problem has an
analogical design.

• The solution of the problem
offers “Devise a Plan” step.

• It types the algorithm for the
best plan available.

• The plan can be performed
with drama activities.

Conditionals – Colourful steps game- “I could
understand the problem and the solution better in this
way. I realized that I can understand problems more
effectively by activities and playing games.” (K6)

Conditionals - Colourful steps game- “It helped me
better understand the parts I didn't understand. It was a
fun activity.” (K20)

Conditionals - Colourful steps game- “I could better
understand the activity by seeing, and I believe it will
stay longer in my mind in terms of time.” (K29)

Conditionals- Colourful steps game- “I think we have
visualized the problems thanks to that activity. It also
made the lesson more fun.” (K31)

Variables- Fruit basket- “I had a lot of fun; I learned
variables better and clearly.” (K5)

Variables- Fruit basket- “I had so much fun. It was a
lot of fun to act the fruits and Ali. What it has brought me
is the convenience of doing this application in the
Scratch program. My thinking ability has improved.”
(K7)

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 5

Variables- Fruit baskets- “That was so fun. This
game helped me understand variables.” (K12)

Loops- “Yes, it was fun. It better taught me the
activity.” (K4)

Loops- “I found it fun and it made me better
understand the topic.” (K12)

Plugged
Activities

(B)

• The visual programming tool
Scratch is used.

• It corrects the erroneous code
structure.

• There are interesting
activities.

Conditionals - “The plugged activity was more fun.”
(K10)

Conditionals - “It becomes more fun on the
computer.” (K4)

Variables- “They were very nice and logical
activities. I enjoy such activities.” (K7)

Variables - “It was enjoyable and instructive. Maybe
it could have been a little harder. Other than that, I liked
the faulty code activity the most.” (K12)

Loops- “Overall, it was nice. I liked the coding part
on Scratch the most. The negative side was that there
were no different ideas. Other than that, it was nice.”
(K8)

Loops - “I had more fun on the computer.” (K23)

Plugged
and
Unplugged
Activities

(A)+(B) Conditionals- “The computer activities were as fun
as the activities we did in the classroom.” (K27)

Conditionals- “Both were fun (with and without a
computer), I had a lot of fun.” (K28)

Variables- “The activities were fun to me. I had a lot
of fun.” (K7)

Variables- “They were very amusing and instructive
activities.” (K11)

Loops- “I think in-class activities are very nice and
fun.” (K5)

Loops- “The activities were very fun. I had fun.”
(K6)

The results in Table 6 were based on themes obtained from the content analysis. As stated in the right column,
some of the students appreciated plugged activities more, while some others favoured unplugged activities in a
environment. Some others stated that they liked all the activities in the classroom (including plugged and
unplugged) and found them amusing.

4. Discussion and Conclusion
This case study was carried out to shed light on students’ satisfaction with the plugged and unplugged activities
provided in programming lessons using the PSS model and their preferences for activity type along with their
reasons. As a result, it was found that some participants preferred plugged activities and others, though not as
many, preferred unplugged activities, but most frequent response was that they were positive about
both. Furthermore, the study shows that neither plugged nor unplugged activities affect all students in the same
way. It can be concluded that our model holds the potential to meet the needs of all students since it encompasses
both unplugged and computer activities in the first four and the last three steps, respectively. On the whole, the
students' views regarding the learning process with the PSS model using such terms as fun, liking, effective, and

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 6

efficient indicate positive effects of the implementation on their interest and motivation.

In the literature, it is reported that students’ satisfaction is bound to multiple factors. Sáez-López et al. (2016), in
a study on fifth and sixth graders, found out that students were pleased to work with Scratch visual programming
tools, enjoyed the activities, found the Scratch programming environment amusing, and felt motivated. Calder
(2010) in his study involving sixth graders found that Scratch programming is motivating and interesting for
learners. In their research with nine- and ten-year-old students, Taylor, Harlow, and Forret’s (2010) also found that
plugged activities with the Scratch programming tool were interesting for students. These results are consistent
with our finding that students learning programming through the PSS model showed a greater preference for
plugged activities more. Using Scratch as a visual and block-based programming tool appeared to increase their
interest in and satisfaction with plugged activities and account the findings in the present study. Likewise, previous
researchers point out that the use of visual programming tools increases positive reactions such as interest,
satisfaction, and amusement (Kalelioğlu, 2015; Kalelioğlu and Gülbahar, 2014; Kelleher et al., 2007; Malan and
Leitner, 2007; Pinto and Escudeiro, 2014; Wu et al., 2010).

Previous studies have also established that students enjoy and are motivated by learning through unplugged
activities. For instance, Futschek and Moschitz (2011) included entertaining activities at different levels in an
unplugged environment for teaching students the basic concepts of algorithm and developing their algorithmic
thinking skills prior to switching to a programming environment. In the same vein, Tsalapatas et al. (2012) found
that there was an increase in primary students’ satisfaction with instruction to develop algorithmic thinking skills
when they were offered activities and drama games in an unplugged environment. Moreover, it was noted that
including drama activities in ITS lessons beneficial, more amusing, and increased satisfaction with the lessons and
beneficial and entertaining (Karaosmanoğlu and Adıgüzel, 2017). Some researchers further defended role
playing as a way to lure students to take an active part in the lesson and successfully learn by doing and interacting
with peers, which supports collaborative learning (Atalay, 2010).

In addition, the literature suggests that analogies increase the interest, curiosity, and satisfaction of learners (Keller,
1983 as cited by Seyhan, 2015, p.18; Sarıoğlu and Kartal, 2017). Such findings are in congruence with our finding
that students learning programming through PSS tend to prefer unplugged activities. It is thought the students in
our case favoured unplugged activities mainly because such steps have an analogical basis, drama activities are
entertaining, necessary and unnecessary data are separated in the step of understanding the problem, and devising
a strategy for a solution to the problem increased students’ interest and satisfaction.

Gomes, Falcão and Tedesco (2018) investigated how children can be taught programming concepts with digital
games. A primary finding was that students had difficulty understanding the topic of loops and needed unplugged
activities to reinforce their understanding of this concept, leading the researchers to recommend including in-class
activities besides plugged activities in programming instruction.

Tsarava et al. (2017) conducted a curriculum development study to improve the computational thinking skills of
primary school students. In the target curriculum, concepts common to computational thinking, computers, and
programming were highlighted. While developing the curriculum, they intended to promote the cognitive
operations that underlie computational thinking skills by approaching programming from a cognitive
perspective. The curriculum included both plugged and unplugged game-based activities aiming to motivate
students.

Leifheit, Jabs, Ninaus, Moeller and Ostermann (2018) also assessed the appropriateness of a game-based approach
to teaching programming in primary school to develop students’ computational thinking skills such as abstraction,
generalization, algorithms, and ability to systematically solve complex problems. In the lessons, algorithm
concepts were covered first, and then game-based learning materials were used to introduce the other programming
concepts using tangible objects rather than direct coding. In the following lessons, students' learning was
reinforced with plugged programming exercises. It was concluded that the game-based, non-digital activity
approach had a positive effect on teaching computational thinking and related skills.

Weigend (2014) reports that plugged and unplugged activities together can complement each other and hold
students’ interest and enthusiasm. Futschek and Moschitz (2011) found that using unplugged exercises at the basic
level of teaching programming resulted in students’ higher levels of satisfaction for programming on the computer
as they experience increasing levels of programming, and even those who had no interest in programming at early
stages developed positive attitudes toward programming. Giannakos et al. (2013) pointed out that students' interest
in and satisfaction with computer sciences and programming increased as a result of engaging in both unplugged
and plugged activities, especially for female students.

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 7

Thus the literature supports the effectiveness of a combination of plugged and unplugged activities for enhancing
both conceptual understanding of programming and computational thinking skills. It has been fund that unplugged
tasks support understanding of a problem, devising and implementing a strategy, creating an algorithm, and
dramatizing activities while plugged activities involving the digital media (Scratch, code.org, Lightbot etc.) are
motivating.

In this study it was found out that the type of activity had a significant effect on students' satisfaction in the teaching
programming as a means of developing cognitive skills. Students’ satisfaction increased when they were engaged
in programming lessons in their preferred activity type. Thus, combining the two approaches can help students
overcome the difficulties they encounter face in programming teaching. Therefore the PSS model, which includes
both types of activity, is highly likely to support and appeal to all learners in a programming course.

5. Recommendations
For the teaching programming, we recommend that plugged activities should be included in order to

• Determine students’ levels of interest in using a computer before starting teaching programming for increase
satisfaction with programming, and
• Find out students’ views regarding their preferred learning environment.

We recommend unplugged activities that

• include a problem situation that may have more than one solution.
• are formulated analogically.
• Include role-playing or other drama methods.

References

Ala-Mutka, K. (2004). Problems in learning and teaching programming. Institute of Soft ware Systems, Tampere
University of Technology. Retrieved June 15, 2018 from https://www.cs.tut.fi/~edge/literature_study.pdf

Arabacıoğlu, T., Bülbül, H. İ., & Filiz, A. (2007, January). A New Approach to Computer Programming
Teaching. In Proceedings of the 9th Academic Informatics Conference, Dumlupınar University, Kütahya,
Turkey.

Aşkar, P., & Davenport, D. (2009). An investigation of factors related to self-efficacy for Java programming
among engineering students. TOJET: The Turkish Online Journal of Educational Technology, 8(1), 26-27.

Asad, K., Tibi, M., & Raiyn, J. (2016). Primary school pupils’ attitudes toward learning programming through
visual interactive environments. World journal of education, 6(5), 20. doi:10.5430/wje.v6n5p20

Atalay, O.(2010). Effect of the use of drama method on the 5th grade students success in information
technologies course. Unpublished Master Thesis. Gazi University, Education Sciences Institute, Ankara.

Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and assessing the development of
computational thinking. In Proceedings of the 2012 annual meeting of the American Educational Research
Association, Vancouver, Canada, 1(25).

Brown, Q., Mongan, W., Kusic, D., Garbarine, E., Fromm, E., & Fontecchio, A. (2013). Computer aided
instruction as a vehicle for problem solving: Scratch programming environment in the middle years
classroom. Retrieved September 22, 2017 from http://www.pages.drexel.edu/~dmk25/ASEE_08.pdf

Büyüköztürk, Ş., Çakmak, E. K., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2016). Bilimsel araştırma
yöntemleri. Ankara: Pegem Akademi.

Byrne, P., & Lyons, G. (2001). The effect of student attributes on success in programming. ACM SIGCSE
Bulletin, 33(3), 49-52. doi: 10.1145/377435.377467

Calder, N. (2010). Using Scratch: An integrated problem-solving approach to mathematical thinking. Australian
Primary Mathematics Classroom, 15(4), 9-14.

Cohen, L., Manion, L., & Morrison, K. (2005). Research methods in education (5th ed.). London: Routledge
Falmer.

https://www.cs.tut.fi/~edge/literature_study.pdf
http://www.pages.drexel.edu/~dmk25/ASEE_08.pdf

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 8

Coull, N. J., & Duncan, I. M. (2011). Emergent requirements for supporting introductory programming.
Innovation in Teaching and Learning in Information and Computer Sciences, 10(1), 78-85. doi:
10.11120/ital.2011.10010078

Creswell, J. W. (2013). Steps in conducting a scholarly mixed methods study. DBER Speaker Series. 48.
Çatlak, Ş., Tekdal, M., & Baz, F. Ç. (2015). The Status of Teaching Programming with Scratch: A Document

Review Work. Journal of Instructional Technologies & Teacher Education, 4(3), 13-25.
Denner, J., Werner, L., Campe, S., & Ortiz, E. (2014). Pair programming: Under what conditions is it

advantageous for middle school students?. Journal of Research on Technology in Education, 46(3), 277-
296. doi: 10.1080/15391523.2014.888272

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can they be used to
measure understanding of computer science concepts?. Computers & Education, 58(1), 240-249. doi:
10.1016/j.compedu.2011.08.006

Erümit A. K., Karal H., Şahin G., Aksoy D.A., Aksoy A., & Benzer A.İ. (2019). A Model Suggested for
Programming Teaching: Programming in Seven Steps. Education & Science. 44(197), 155-183.
doi: 10.15390/EB.2018.7678

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5–6 years old kindergarten children in a
computer programming environment: A case study. Computers & Education, 63, 87-97. doi:
10.1016/j.compedu.2012.11.016

Fesakis, G., & Serafeim, K. (2009). Influence of the familiarization with scratch on future teachers’ opinions and
attitudes about programming and ICT in education. ACM SIGCSE Bulletin, 41(3), 258-262. doi:
10.1145/1562877.1562957

Futschek, G., & Moschits, J. (2010). Developing algorithmic thinking by inventing and playing algorithms.
Retrieved December 9, 2016 from https://publik.tuwien.ac.at/ files/PubDat_187461.pdf

Futschek, G. (2006). Algorithmic thinking: The key for understanding computer science. In: Mittermeir, R.
(Ed.), Informatics Education The Bridge between Using and Understanding Computers. Vol. 4226 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, ss. 159 – 168.

Futschek, G., & Moschitz, J. (2011, October). Learning algorithmic thinking with tangible objects eases
transition to computer programming. In International Conference on Informatics in Schools: Situation,
Evolution, and Perspectives, 155-164. Springer, Berlin, Heidelberg.

Giannakos, M. N., Jaccheri, L., & Proto, R. (2013, April). Teaching computer science to young children through
creativity: Lessons learned from the case of Norway. In Proceedings of the 3rd Computer Science
Education Research Conference on Computer Science Education Research, Heerlen.

Ginat, D. (2004). On novice loop boundaries and range conceptions. Computer Science Education, 14(3), 165-
181. doi: 10.1080/0899340042000302709

Gomes, T. C. S., Falcão, T. P., & Tedesco, P. C. D. A. R. (2018). Exploring an approach based on digital games
for teaching programming concepts to young children. International journal of child-computer
interaction, 16, 77-84. doi: 10.1016/j.ijcci.2017.12.005

Gomes, A., & Mendes, A. J. (2007, September). Learning to program - difficulties and solutions. In
International Conference on Engineering Education, Coimbra.

Grover, S., Pea, R., & Cooper, S. (2016, March). Factors influencing computer science learning in middle
school. In Proceedings of the 47th ACM technical symposium on computing science education, New York.
doi: 10.1145/2839509.2844564

Hawi, N. (2010). Causal attributions of success and failure made by undergraduate students in an introductory-
level computer programming course. Computers & Education, 54(4), 1127-1136. doi:
10.1016/j.compedu.2009.10.020

Helminen, J., & Malmi, L. (2010, October). Jype-a program visualization and programming exercise tool for
Python. In Proceedings of the SOFTVIS '10 Proceedings of the 5th international symposium on Software
visualization, 153-162, Utah, USA. doi: 10.1145/1879211.1879234

http://dx.doi.org/10.15390/EB.2018.7678
https://publik.tuwien.ac.at/

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 9

Hermans, F., & Aivaloglou, E. (2017, November). To Scratch or not to Scratch?: A controlled experiment
comparing plugged first and unplugged first programming lessons. In Proceedings of WiPSCE '17 the 12th
Workshop on Primary and Secondary Computing Education, 49-56. doi: 10.1145/3137065.3137072

Kafai, Y. B., & Q. Burke. (2014). Connected code: Why children need to learn programming. MIT Press.
Kalelioğlu, F., & Gülbahar, Y. (2014). The effects of teaching programming via Scratch on problem solving

skills: a discussion from learners' perspective. Informatics in Education, 13(1), 33-50.
Kalelioğlu, F. (2015). A new way of teaching programming skills to K-12 students: Code.org. Computers in

Human Behavior, 52, 200-210. doi: 10.1016/j.chb.2015.05.047
Karaosmanoğlu, G., & Adıgüzel, Ö. (2017). Effects of Creative Drama Method On Students Academic

Achievements In Ict Lessons Of Sixth Grades. Elementary Education Online, 16(2), 693-712.
Kelleher, C., Pausch, R., & Kiesler, S. (2007, April). Storytelling Alice motivates middle school girls to learn

computer programming. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ACM, 1455-1464. doi: 10.1145/1240624.1240844

Klopfer, E., & Yoon, S. (2005). Developing games and simulations for today and tomorrow’s tech savvy youth.
TechTrends, 49(3), 33-41. doi: 10.1007/BF02763645

Kobsiripat, W. (2015). Effects of the media to promote the scratch programming capabilities creativity of
elementary school students. Procedia-Social and Behavioral Sciences, 174, 227- 232. doi:
10.1016/j.sbspro.2015.01.651

Kotsopoulos, D., Floyd, L. M., Khan, S. S., Namukasa, I. K., Somanath, S., Weber, J. L., & Yiu, C. (2017). A
Pedagogical Framework for Computational Thinking. Digital Experiences in Mathematics Education. 3(2),
154-171. doi: 10.1007/s40751-017-0031-2

Lahtinen, E., Ala-Mutka, K., & Jarvinen, H. (2005) A Study of Difficulties of Novice Programmers. In Acm
Sigcse Bulletin, ACM, 37(3), 14-18. doi: 10.1145/1067445.1067453

Lai, C. S., & Lai, M. H. (2012, June). Using computer programming to enhance science learning for 5th graders
in Taipei. International Symposium on computer, consumer and control, 146-148. Taiwan. IEEE. doi:
10.1109/IS3C.2012.45

Lai, A., & Yang, S. (2011, September). The learning effect of visualized programming learning on 6th graders’
problem solving and logical reasoning abilities. In Electrical and Control Engineering (ICECE), 2011
International Conference on, IEEE, 6940-6944. doi: 10.1109/ICECENG.2011.6056908

Law, K. M., Lee, V. C., & Yu, Y. T. (2010). Learning motivation in e-learning facilitated computer
programming courses. Computers & Education, 55(1), 218-228. doi: 10.1016/j.compedu.2010.01.007

Leifheit, L., Jabs, J., Ninaus, M., Moeller, K., & Ostermann, K. (2018, October). Programming Unplugged: An
Evaluation of Game-Based Methods for Teaching Computational Thinking in Primary School. In ECGBL
2018 12th European Conference on Game-Based Learning (p. 344). Academic Conferences and publishing
limited.

Malan, D. J., & Leitner, H. H. (2007). Scratch for budding computer scientists. ACM SIGCSE Bulletin, 39(1),
223-227. doi: 10.1145/1227310.1227388

Mannila, L., Peltomäki, M., & Salakoski, T. (2006). What about a simple language? Analyzing the difficulties in
learning to program. Computer Science Education, 16(3), 211-227. doi: 10.1080/08993400600912384

McMillan, J. H. (2000). Educational research: Fundamentals for the consumer (3th ed.). New York: Longman.
Merriam, S. B., & Tisdell, E. J. (2015). Qualitative research: A guide to design and implementation. San

Francisco: John Wiley & Sons.
Milková, E., & Hulkova, A. (2013). Algorithmic and logical thinking development: base of programming skills.

WSEAS Transactions on Computers, 12(2), 41-51.
Naharro-Berrocal, F., Pareja-Flores, C., Urquiza-Fuentes, J., & Velazquez-Iturbide, J. A. (2002). Approaches to

comprehension-preserving graphical reduction of program visualizations. In Proceedings of the 2002 ACM
symposium on Applied computing, ACM, 771-777. doi: 10.1145/508791.508941

Özmen, B., & Altun, A. (2014). Undergraduate students' experiences in programming: difficulties and obstacles.
Turkish Online Journal of Qualitative Inquiry, 5(3), 1-27. doi: 10.17569/tojqi.20328

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 10

Pinto, A., & Escudeiro, P. (2014, June). The use of scratch for the development of 21st century learning skills in
ICT. Information Systems and Technologies, 9th Iberian Conference, (pp. 1-4). IEEE. doi:
10.1109/CISTI.2014.6877061

Qian, Y., & Lehman, J. D. (2016). Correlates of success in introductory programming: A study with middle
school students. Journal of Education and Learning, 5(2), 73. doi: :10.5539/jel.v5n2p73

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review and discussion.
Computer Science Education, 13(2), 137-172. doi: 10.1076/csed.13.2.137.14200

Sarıoğlu, T., & Kartal, G. (2017). Drama as Method—An Alternative in Teaching Information and
Communication Technologies? Elementary Education Online, 16(1), 366-376.

Sáez-López, J. M., Román-González, M., & Vázquez-Cano, E. (2016). Visual programming languages
integrated across the curriculum in elementary school: A two year case study using “Scratch” in five
schools. Computers & Education, 97, 129-141. doi: 10.1016/j.compedu.2016.03.003

Schwartz J., Stagner J., & Morrison, W. (2006). Kid's programming language (KPL). In ACM SIGGRAPH 2006
Educators program, ACM. doi: 10.1145/1179295.1179348

Seppälä, O., Malmi, L., & Korhonen, A. (2006). Observations on student misconceptions—A case study of the
Build–Heap Algorithm. Computer Science Education, 16(3), 241-255. doi: 10.1080/08993400600913523

Seyhan, H. G. (2015). Okul öncesi fen eğitiminde analoji kullanımının önemi ve analoji örnekleri. Cumhuriyet
International Journal of Education, 4(2), 15-28.

Shih, I.-J. (2014). The effect of scratch programming on the seventh graders’ mathematics abilities and problem
solving attitudes. Unpublished master’s thesis. Taipei University, Taiwan.

Silverman, D. (2013). Doing qualitative research: A practical handbook. London: SAGE Publications.
Stolee, K. T., & Fristoe, T. (2011, March). Expressing computer science concepts through Kodu game lab. In

Proceedings of the 42nd ACM Technical Symposium on Computer Science Education, 99-104. Dallas,
USA. doi: 10.1145/1953163.1953197

Şahin, G. (2018). A methodology for teaching programming at middle school level. Unpublished Master Thesis.
Karadeniz Technical University, Education Sciences Institute, Trabzon.

Taylor, M., Harlow, A., & Forret, M. (2010). Using a computer programming environment and an interactive
whiteboard to investigate Some Mathematical Thinking. Procedia Social and Behavioral Sciences, 8 (2010),
561-570. doi: 10.1016/j.sbspro.2010.12.078

Tsalapatas, H., Heidmann, O., Alimisi, R., & Houstis, E. (2012). Game-based programming towards developing
algorithmic thinking skills in primary education. Scientific Bulletin of the" Petru Maior" University of
Targu Mures, 9(1), 56-63.

Tsarava, K., Moeller, K., Pinkwart, N., Butz, M., Trautwein, U., & Ninaus, M. (2017, October). Training
computational thinking: Game-based unplugged and plugged-in activities in primary school. In European
Conference on Games Based Learning, 687-695. Nijmegen, Netherlands.

Wagner, T. (2008). The global achievement gap: Why even our best schools don't teach the new survival skills
our children need-and what we can do about it. New York: Basic Books.

Weigend, M. (2014). The digital woodlouse--scaffolding in science-related scratch projects. Informatics in
Education, 13(2), 293-305. doi: 10.15388/infedu.2014.09

Wilson, A., & Moffat, D.C. (2010, September). Evaluating Scratch to introduce younger school children to
programming. In Proceedings of the 22nd Annual Psychology of Programming Interest Group, Leganés,
Spain.

Wu, W., Chang, C., & He, Y. (2010). Using Scratch as game-based learning tool to reduce learning anxiety in
programming course. In Proceedings of Global Learn Asia Pacific, 1845- 1852.

Yıldırım, A., & Şimşek, H. (2005). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayıncılık.
Zanetti, H., Borges, M., & Ricarte, I. (2016, November). Pensamento Computacional no Ensino de

Programação: Uma Revisão Sistemática da Literatura Brasileira. In Brazilian Symposium on Computers in
Education (Simpósio Brasileiro de Informática na Educação-SBIE), 27(1), 21. doi:
10.5753/cbie.sbie.2016.21

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 11

Appendix A

Semi-Structured Interview Questions for Informatics Technologies and Software Teachers

INTERVIEW QUESTIONS REGARDING THE LESSON PLAN TEACHING PROGRAMMING TO

MIDDLE SCHOOL 6TH GRADE STUDENTS

Interviewee: ………………………………………… Interviewer:……………….

Date and Time: …………/………………2017 at …………….:………………

Duration: …………………………………………………………………………………

1. How suitable do you think the activity in the lesson plan for teaching programming to middle school 6th

graders is for the students’ levels?

2. How suitable do you think the computer activities in the lesson plan for teaching programming to middle

school 6th graders are for the students’ levels?

3. Do you find the duration allocated for the activities in the lesson plan for teaching programming to middle

school 6th graders sufficient? Why or why not?

4. Do you find the duration allocated for the computer activities in the lesson plan for teaching programming to

middle school 6th graders sufficient? Why or why not?

5. How applicable do you think the activities in the lesson plan for teaching programming to middle school 6th

graders are in overcrowded classrooms?

6. How applicable do you think the computer activities in the lesson plan for teaching programming to middle

school 6th graders are in overcrowded classrooms?

Appendix B

Students’ Diaries on Problem Solving Concepts and Approaches

1. On the whole, how did you find the teaching of the lesson?
(Please specify the good and bad sides, and what you liked and
disliked.)

2. What are the good sides of the activities in the lesson?
3. What are the bad sides of the activities in the lesson?
4. What do you think an algorithm resembles?
5. Remembering the activities performed in the lesson, what do
you think an algorithm is?

6. Please discuss the activities about algorithm which were
performed in the lesson.

7. What do you think a problem resembles?
8. Remembering the activities performed in the lesson, what do
you think a problem is?

9. Please discuss the activities about the problem status which
were performed in the lesson.

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 12

Appendix C
Activity: “Helping the Shepherd”

Scenario: There was a shepherd. Next to the shepherd was a wolf, a grass and a sheep. They'il cross the river with
a raft. If the wolf passes the sheep eats grass, the grass passes, the wolf eats the sheep, the sheep wolves, the sheep
crosses without eating sheep.

Appendix D
Activitity: “I am finding the cities”

Scenario: Friends, we see the map engineer Ayşe on the picture. Her new job is to map the cities in the region
where a circular lake is located. Can you help her with this? The distances between these cities are given in the
table. Match cities A, B, C, D and E in the table with the numbers 1, 2, 3, 4 and 5 in the photo.

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 13

Appendix E

Guidelines to Examination Scratch Projects for Students

Category Reviewed application

name
Feature

Movement Sound Changing
scene

Talking
balloon

Move with
keyboard

Games

Animations

Stories

Music and dance

Art

Your application
idea

Appendix F
Activitity: “Ali and Ayşe are going on holiday”

Scenario: Ali and Ayşe live in Gebze. They'il go to their grandmother with bus. But before they go, they want to
say goodbye to their friends. So, they will meet their friends in Sultanahmet Square. But they don't know which
way to go. Can you show Ali and Ayşe the way to Sultanahmet and then to the bus terminal as soon as possible?

www.manaraa.com

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1
ISSN 2513-8359

 14

Appendix G
“Ali and Ayşe are going on holiday” activity Problem Acknowledgement Table (PAT) form

Questions Answers
1. Where do Ali and Ayşe live? Gebze

2. Who will Ali and Ayşe go to? Grandmother

3. Where will Ali and Ayşe meet with their friends and
where will they go after they meet?

They will meet at Sultanahmet Square.
They'il go to the bus station after saying
goodbye to their friends.

4. How do you describe the transfer points on the map? The intersection of two different colors the
path.

5. What do transportation times mean at the event? The elapsed time between two stops in each
line color.

6. How is the time elapsed from one stop to another stop
in the activity calculated?

With given transportation times.

Appendix H
“Ali and Ayşe are going on holiday” activity Strategy Devise Form (SDF)

Boarding Stop Landing Stop Count of
Stops

Line Color Time

1. Gebze Söğütlü Çeşme 9 Green 27 min
2. Söğütlü Çeşme Mecidiyeköy 5 Pink 20 min
3. Şişli Karaköy 4 Yellow 4 min
4. Karaköy Sultanahmet 4 Blue 8 min
5. Sultanahmet Yusuf-paşa 1 Blue 2 min
6. Aksaray Otogar 4 Red 12 min
7.
8.
9.
10.

Total Time: 73 min
Total Number of Transfers: 4

	Abstract
	1. Introduction
	2. Method
	2.1. Research Model
	2.2. Participants
	2.3. Data Collection Tools
	2.4. Data Collection and Analysis
	2.5. Validity and Reliability of Study
	2.6. Implementation Approvals
	2.7. The Implementation
	3. Results
	3.1. Effects of programming lessons taught with the PSS model on students' satisfaction
	Table 5. Students’ Preferences for Activity Type
	Table 6. Students’ Reasons for Activity Preferences
	4. Discussion and Conclusion
	5. Recommendations
	References
	Appendix A

